Sense of Number Visual Calculation Policy

Basic Edition for
Abbey Meads Primary School
October 2014

Graphic Design by Dave Godfrey
Compiled by the Sense of Number Maths Team

For sole use within Abbey Meads Primary School.

'A picture is worth 1000 words!' www.senseofnumber.co.uk

Guide to using a Visual Calculation Policy

The Sense of Number Visual Calculation Policy provides an visual representation of a school's written and mental calculation policy.

Typical uses:

Classoom: The slides are printed out (e.g. A4) and the appropriate slides are displayed within each classroom for continual reference or on a working wall.

Teacher Reference: The slides are printed out (e.g. 9 slides per A4 page) and inserted in the teacher's planning folder.

Parents: The slides are used to communicate to parents the methods being taught and used within school.

Website: Slides from the VCP are inserted on a schools' maths webpages.

(Please note: the VCP should not be made available for download)

KC1: Key Concepts! Addition

"What is 8 add 2?" Answer: 10

Subtraction

"What is 8 subtract 2?" Answer: 6 "The difference between 8 and 2 is 6"

KC2: Key Concepts!

Multiplication

 $8 \times 2 = 16$

"8 multiplied by 2" means "8, 2 times" or "2 groups of 8"

Division

 $8 \div 2 = 4$

"8 divided by 2" means "How many groups of 2 are there in 8?" Answer: 4

("8 shared into 2 sets is 4")

Calculation Vocabulary

equivalent to

is the same as

Addition

X Multiplication

Operations

- Subtraction

Addition Vocabulary

Subtraction Vocabulary

count back decrease subtract take away

difference between

Multiplication Vocabulary

product multiplu repeated addition

Division Vocabulary

luotient factor groups of

A1: Objects & Pictures

"If I have 3 and then 5 more, how many altogether? Answer: 8"

A2: Counting On +1 +1 5 + 3 =

A3: Forwards Jump 43 + 24 = 67

A4: Partitioning 26 + 35 = 6120 + 6 + 30 + 5

60 + 1

A5: Column Addition

S1: Objects

"What do I get if I take 3 away from 7? Answer: 4"

\$2: What's the Difference?

"How many more is 7 than 5? What is the difference?"

53: Counting Back

"What do I get if I take 3 away from 12? Answer: 9"

54: Counting On

"How many more is 12 than 9? What is the difference?"

S5: Backwards Boing

56: Backwards Bounce

57: Backwards Jump

75 - 27 = 48

S8: Triple Jump!

75 - 37 =

59: Expanded Column

Subtraction (100, 10, 1s)

723 - 356 = 367

5 300

S10: Column Subtraction

100 10 356

M1: Repeated Addition (Groups)

$$5 \times 3 = 5 + 5 + 5 = 15$$

"5 multiplied by 3" means "5, 3 times", which gives "3 lots of 5"!

M2: Repeated Addition

(Number Line)

$$5 \times 3 = 5 + 5 + 5 = 15$$

"5 times 3" means "5, 3 times!"

M3: Arrays

 $3 \times 5 = 15$ or $5 \times 3 = 15$

M4: Grid Method **Short Multiplication**

 $123 \times 5 = 615$

100 | 500

M5: Column Multiplication

100 10

M6: Grid Method Long Multiplication

23	X	12		27	6
----	---	----	--	----	---

X	10	2	
20	200	40	240
3	30	6	36

276

M7: Long Multiplication

 (5×43) (60×43)

MM1: Jump!

x100

x10

+10 ÷100

D1: Sharing (Concept)

"If I share 6 into 2 equal amounts, how many in each group?" Answer: 3

D2: Grouping (Concept)

"How many groups of 2 can I make out of 6? **Answer: 3**

D3: Division as Sharing

"If I share 12 into 2 equal amounts, how many in each group?" Answer: 6

D4: Division as Grouping

"How many groups of 2 can I fit into 12?" Answer: 6

D5: Grouping on a Number Line

D6: Chunking Jump

D7: Chunking 3 42 $-30 (10 \times 3)$ $-12(4 \times 3)$

 $42 \div 3 = 14$

D8: Short Division

 $136 \div 4 = 34$

136

D9: Long Division

Short Division Method

26 r21 37 924

D10: Long Division **Traditional Method** 26r21 37 983

 $983 \div 37 = 26_{121}$

